Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

نویسندگان

  • Longqiu Li
  • Jiyuan Wang
  • Tianlong Li
  • Wenping Song
  • Guangyu Zhang
چکیده

The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors

Bubble-propelled catalytic micromotors have recently been attracting much attention. A bubble-propulsion mechanism has the advantage of producing a stronger force and higher speed than other mechanisms for catalytic micromotors, but the nature of the fluctuated bubble generation process affects the motions of the micromotors, making it difficult to control their motions. Thus, understanding of ...

متن کامل

Poisoning of bubble propelled catalytic micromotors: the chemical environment matters

Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as w...

متن کامل

Surface roughness-induced speed increase for active Janus micromotors.

We demonstrate a simple physical fabrication method to control surface roughness of Janus micromotors and fabricate self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.

متن کامل

C3nr34213a 2909..2914

Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as w...

متن کامل

A Viscosity-Based Model for Bubble-Propelled Catalytic Micromotors

Micromotors have shown significant potential for diverse future applications. However, a poor understanding of the propelling mechanism hampers its further applications. In this study, an accurate mechanical model of the micromotor has been proposed by considering the geometric asymmetry and fluid viscosity based on hydrodynamic principles. The results obtained from the proposed model are in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 38  شماره 

صفحات  -

تاریخ انتشار 2014